Addition of $\mathrm{Cr}(\mathrm{CO})_{5}$ to the $\mathrm{M}\left(\eta^{2}-\mathrm{S}_{2}\right)$ moiety of $\mathrm{Cp}_{2} \mathrm{M}\left(\mathrm{S}_{2}\right) \mathrm{H}$ $\left(\mathrm{Cp}^{\prime}={ }^{ } \mathrm{BuC}_{5} \mathrm{H}_{4}: \mathrm{M}=\mathrm{Ta} ; \mathrm{Cp}^{\mathrm{x}}=\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{Et}: \mathrm{M}=\mathrm{Nb}\right.$) and crystal structures of $\mathrm{Cp}_{2}^{\prime} \mathrm{TaS}_{2} \mathrm{H} \cdot\left[\mathrm{Cr}(\mathrm{CO})_{5}\right]_{n}(n=1,2)$

Henri Brunner ${ }^{\text {a }}$, Günther Gehart ${ }^{\mathrm{b}}$, Jean-Claude Leblanc ${ }^{\text {b }}$, Claude Moise ${ }^{\text {b }}$, Bernhard Nuber ${ }^{\text {c }}$, Bernhard Stubenhofer ${ }^{\text {a }}$, Florence Volpato ${ }^{\text {b }}$, Joachim Wachter ${ }^{\mathrm{a}, *}$
${ }^{\text {a }}$ Institut fur Anorganische Chemie der Universität Regensburg, D-93040 Regensburg, Germany
${ }^{\mathrm{b}}$ Laboratoire de Synthèse et d'Electrosynthèse Organométalliques (URA 1685), 6 Boulevard Gabriel, F-21100 Dijon, France
${ }^{\text {' Anorganisch-chemisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany }}$

Received 21 July 1995

Abstract

Reaction of $\mathrm{Cp}_{2}^{\prime} \mathrm{TaS}_{2} \mathrm{H}\left(\mathrm{Cp}^{\prime}={ }^{1} \mathrm{BuC}_{5} \mathrm{H}_{4}\right)$ or $\mathrm{Cp}_{2}^{\mathrm{x}} \mathrm{NbS}_{2} \mathrm{H}\left(\mathrm{Cp}^{\mathrm{x}}=\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{Et}\right)$ with an excess of $\mathrm{Cr}(\mathrm{CO}){ }_{5} \mathrm{THF}$ gives the adducts $\mathrm{Cp}_{2}^{\prime} \mathrm{TaS}_{2} \mathrm{H} \cdot \mathrm{Cr}(\mathrm{CO})_{5} 1, \mathrm{Cp}_{2}^{\prime} \mathrm{TaS}_{2} \mathrm{H} \cdot 2 \mathrm{Cr}(\mathrm{CO})_{5} 2$, and $\mathrm{Cp}_{2}^{\mathrm{x}} \mathrm{NbS}_{2} \mathrm{H} \cdot \mathrm{Cr}(\mathrm{CO})_{5} 3$ respectively. 1 and 2 are separated by fractional crystallisation. The crystal structures show the $\mathrm{Cr}(\mathrm{CO})_{5}$ fragment in 1 to be coordinated to the 'outer' sulfur, and in 2 both $\mathrm{Cr}(\mathrm{CO})_{5}$ fragments are coordinated to each sulfur of the S_{2} ligand in a trans fashion. In all cases approximate sp ${ }^{3}$ hybridisation of the S atoms is observed. The new compounds are thermally labile and give CO-free, trinuclear compounds of the type $\mathrm{Cp}_{4} \mathrm{M}_{2} \mathrm{~S}_{4} \mathrm{Cr}$ upon heating their solutions.

Keywords: Chromium; Molybdenum; Disulfide ligand; X-ray structure; Niobium

1. Introduction

Disulfide ligands show an impressive variety of coordination possibilities [1] in polynuclear transition metal complexes in that they predominantly bridge homonuclear building blocks. A particular case of mononuclear complexes are metallocene disulfides in which only the η^{2} coordination mode is possible [2]. When early transition metals are involved in these types of compounds the presence of additional 'functional' groups, e.g. CO in $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Zr}\left(\mathrm{S}_{2}\right) \mathrm{CO}$ [3] or H in $\mathrm{Cp}^{\left({ }^{*}\right)}{ }_{2} \mathrm{M}\left(\mathrm{S}_{2}\right) \mathrm{H}(\mathrm{M}=$ Nb, Ta) [4-6] is required which may enhance the reactivity. A typical reaction of the $\eta^{2}-S_{2}{ }^{2-}$ ligand is the oxidative insertion of other metal fragments to produce polynuclear sulfide clusters [7]. However, the potential of forming polymetallic compounds by simple addition of unsaturated complex fragments seems to be unexplored. This refers in particular to the coordination of $\mathrm{M}^{\prime}(\mathrm{CO})_{5}$ fragments $\left(\mathrm{M}^{\prime}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}\right)$ which has

[^0]already been realised for monosulfide ligands regardless of their coordination mode [8]. In this paper we report on the synthesis of new heterobimetallic compounds in which both metal centers are linked by a disulfide bridge by the addition of $\mathrm{Cr}(\mathrm{CO})_{5}$ to the $\mathrm{M}\left(\eta^{2}-\mathrm{S}_{2}\right)$ moiety of $\mathrm{Cp}_{2} \mathrm{M}\left(\mathrm{S}_{2}\right) \mathrm{H}\left(\mathrm{Cp}^{\prime}={ }^{\mathrm{t}} \mathrm{BuC}_{5} \mathrm{H}_{4}: \mathrm{M}=\mathrm{Ta} ; \mathrm{Cp}^{\mathrm{x}}\right.$ $=\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{Et}: \mathrm{M}=\mathrm{Nb}$). First results on their reactivity are also given.

2. Results and discussion

2.1. Synthesis and characterisation of $\mathrm{Cp}_{2}^{\prime} \mathrm{TaS}_{2} \mathrm{H}$. $\mathrm{Cr}(\mathrm{CO})_{5} 1$ and $\mathrm{Cp}_{2}^{\prime} \mathrm{TaS}_{2} \mathrm{H} \cdot 2 \mathrm{Cr}(\mathrm{CO})_{5} 2$
$\mathrm{Cp}_{2}^{\prime} \mathrm{TaS}_{2} \mathrm{H}$ reacts with a slight excess of $\mathrm{Cr}(\mathrm{CO})_{5}{ }^{-}$ THF to give a mixture of two compounds (Eq. (1)). This is prepurified by column chromatography, whereas isolation of the individual compounds $\mathrm{Cp}_{2}^{\prime} \mathrm{TaS}_{2} \mathrm{H}$ $\mathrm{Cr}(\mathrm{CO})_{5} 1$ and $\mathrm{Cp}_{2}^{\prime} \mathrm{TaS}_{2} \mathrm{H} \cdot 2 \mathrm{Cr}(\mathrm{CO})_{5} 2$ occurs by fractional crystallisation at $-20^{\circ} \mathrm{C}$. The overall yield for both compounds is 84%, the ratio $1: 2$ is ca. $6: 1$. Toluene
solutions of pure 2 slowly form 1, e.g. after 3 h at room temperature the ratio $\mathbf{1 : 2}$ is ca. $1: 1$.

The IR spectra of 1 and 2 exhibit the typical absorption pattern for the coordinated $\mathrm{Cr}(\mathrm{CO})_{5}$ moiety. In the case of 2 the peak at $2060 \mathrm{~cm}^{-1}$ splits into two peaks of equal intensity, indicating the presence of two $\mathrm{Cr}(\mathrm{CO})_{5}$ groups in slightly different surroundings. The ${ }^{1} \mathrm{H}$ NMR spectra of 1 and 2 show only one peak for the ${ }^{t} \mathrm{Bu}$ protons what suggests equivalent Cp^{\prime} ligands. However, as shown by the X-ray crystal diffraction studies (see below), the orientation of the $\mathrm{Cr}(\mathrm{CO})_{5}$ fragment in 1 should give rise to two different resonances. The fact that the signals remain invariant down to $-60^{\circ} \mathrm{C}$ may be explained by a pseudo inversion at the sp^{3} sulfur. It should be noted that the attack of $\mathrm{CH}_{3}{ }^{+}$at the $\mathrm{S}_{2}{ }^{2-}$ ligand of $\mathrm{Cp}_{2}^{\prime} \mathrm{TaS}_{2} \mathrm{H}$ also gives rise to the formation of a chiral sulfur site which in this case could be unequivocally inferred from the ${ }^{1} \mathrm{H}$ NMR data [4].

The X-ray structure analysis of 1 shows that its structure may be derived from that of its precursor complex $\mathrm{Cp}_{2}^{\prime} \mathrm{TaS}_{2} \mathrm{H}$ [5] by coordination of the $\mathrm{Cr}(\mathrm{CO})_{5}$ fragment at the lateral sulfur $S(1)$ (Tables 1 and 2; Fig. 1). The angle $\mathrm{Ta}-\mathrm{S}(1)-\mathrm{Cr}\left(136.0(1)^{\circ}\right)$ seems to be affected by repulsive interactions between the CO groups and the Cp^{\prime} hydrogens. The crystal structure of 2 exhibits two $\mathrm{Cr}(\mathrm{CO})_{5}$ groups coordinated in a trans con-

Table 1
Selected bond lengths (\AA) and angles (deg) for $\mathrm{Cp}_{2}^{\prime} \mathrm{TaS}_{2} \mathrm{H} \cdot \mathrm{Cr}(\mathrm{CO})_{5}$ (1)

$\mathrm{Ta}(1)-\mathrm{S}(1)$	$2.558(4)$
$\mathrm{Ta}(1)-\mathrm{S}(2)$	$2.447(4)$
$\mathrm{S}(1)-\mathrm{S}(2)$	$2.055(5)$
$\mathrm{S}(1)-\mathrm{Cr}(1)$	$2.466(4)$
$\mathrm{S}(1)-\mathrm{Ta}(1)-\mathrm{S}(2)$	$48.4(1)$
$\mathrm{Ta}(1)-\mathrm{S}(1)-\mathrm{S}(2)$	$63.0(1)$
$\mathrm{Ta}(1)-\mathrm{S}(1)-\mathrm{Cr}(1)$	$136.0(1)$
$\mathrm{S}(2)-\mathrm{S}(1)-\mathrm{Cr}(1)$	$115.6(2)$
$\mathrm{Ta}(1)-\mathrm{S}(2)-\mathrm{S}(1)$	$68.6(1)$
$\mathrm{S}(1)-\mathrm{Cr}(1)-\mathrm{C}(21)$	$88.9(4)$
$\mathrm{S}(1)-\mathrm{Cr}(1)-\mathrm{C}(22)$	$96.1(4)$
$\mathrm{S}(1)-\mathrm{Cr}(1)-\mathrm{C}(23)$	$176.6(4)$

Table 2
Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement coefficients ($\AA^{2} \times 10^{3}$) for $\mathrm{Cp}_{2}^{\prime} \mathrm{TaS}_{2} \mathrm{H} \cdot \mathrm{Cr}(\mathrm{CO})_{5}(1)$

Atom	x	y	z	$U_{\text {eq }}{ }^{\text {a }}$
Ta(1)	3603(1)	3608(1)	3934(1)	34(1)
$\mathrm{Cr}(1)$	4088(1)	456(2)	2206(1)	43(1)
S(1)	3581(1)	1821(3)	2828(2)	43(1)
S(2)	3553(1)	$3392(3)$	2130(2)	47(1)
O(21)	3677(3)	$564(10)$	166(7)	91(5)
$\mathrm{O}(22)$	4535(3)	-65(8)	4179(7)	79(4)
O(23)	4659(3)	-1289(8)	1399(7)	78(4)
O(24)	4688(3)	2321(9)	1631(7)	82(4)
O(25)	3473(3)	- 1410(9)	2578(8)	98(5)
C(1)	4078(4)	4499(9)	5104(8)	42(4)
C(2)	4222(3)	4804(10)	4169(9)	40(4)
C(3)	4334(4)	3803(13)	3694(10)	67(6)
C(4)	4272(5)	2881(3)	4377(15)	98(8)
C(5)	$4110(5)$	3313(12)	5226(11)	73(6)
C(6)	4330(4)	6003(13)	3851(10)	61(6)
C(7)	4260(5)	6154(14)	2731(10)	117(9)
C(8)	4080(5)	6919 (11)	4382(11)	90(7)
C(9)	4779(4)	6192(13)	4140(11)	108(8)
C(11)	3124(4)	4375(12)	5075(10)	61(6)
C(12)	2911(4)	4414(11)	4138(9)	44(5)
C(13)	2874(4)	3246(11)	3860(11)	62(6)
C(14)	3054(5)	2546(12)	4611 (13)	$79(7)$
C(15)	3202(5)	3275(14)	5350(11)	79(7)
C(16)	2685(4)	5421(13)	3692(12)	$71(6)$
C(17)	2883(5)	6516(14)	3882(19)	209(17)
C(18)	2266(4)	5466(13)	4095(11)	91(7)
C(19)	2650(6)	$5311(19)$	2571(12)	188(14)
C(21)	3830(4)	575(12)	945(10)	58(5)
C(22)	4362(4)	168(10)	3452(10)	46(5)
C(23)	4440(4)	-611(11)	1718(9)	51(5)
C(24)	4460 (3)	1643(11)	1845(9)	47(5)
C(25)	3709(4)	-684(12)	2473(10)	57(5)

${ }^{a}$ Equivalent isotropic U defined as one third of the trace of the orthogonalized $\mathbf{U}_{i j}$ tensor.
figuration (Tables 3 and 4; Fig. 2). As in 1 and $\mathrm{Cp}_{2}^{\prime} \mathrm{TaS}_{2} \mathrm{H}$, the H atom could not be localised. It is striking that in both these compounds the central sulfur $S(2)$ is located very close to the plane defined by the

Fig. 1. ORTEP plot of 1 . The H atom bound to Ta cannot be localised exactly and is therefore omitted.

Table 3
Selected bond lengths (\AA) and angles (deg) for $\mathrm{Cp}_{2}^{\prime} \mathrm{TaS}_{2} \mathrm{H} \cdot 2 \mathrm{Cr}(\mathrm{CO})_{5}$ (2)

$\mathrm{Ta}(1)-\mathrm{S}(1)$	$2.529(4)$
$\mathrm{Ta}(1)-\mathrm{S}(2)$	$2.502(4)$
$\mathrm{Cr}(1)-\mathrm{S}(1)$	$2.456(4)$
$\mathrm{Cr}(2)-\mathrm{S}(2)$	$2.439(4)$
$\mathrm{S}(1)-\mathrm{S}(2)$	$2.049(4)$
$\mathrm{S}(1)-\mathrm{Ta}(1)-\mathrm{S}(2)$	$48.0(1)$
$\mathrm{C}(31)-\mathrm{Cr}(1)-\mathrm{S}(1)$	$89.8(4)$
$\mathrm{C}(32)-\mathrm{Cr}(1)-\mathrm{S}(1)$	$84.7(4)$
$\mathrm{C}(33)-\mathrm{Cr}(1)-\mathrm{S}(1)$	$88.4(4)$
$\mathrm{C}(34)-\mathrm{Cr}(1)-\mathrm{S}(1)$	$101.2(4)$
$\mathrm{C}(35)-\mathrm{Cr}(1)-\mathrm{S}(1)$	$172.1(6)$
$\mathrm{C}(36)-\mathrm{Cr}(2)-\mathrm{S}(2)$	$171.6(4)$
$\mathrm{Ta}(1)-\mathrm{S}(1)-\mathrm{Cr}(1)$	$133.5(2)$
$\mathrm{Ta}(1)-\mathrm{S}(1)-\mathrm{S}(2)$	$65.3(1)$
$\mathrm{Cr}(1)-\mathrm{S}(1)-\mathrm{S}(2)$	$115.5(1)$
$\mathrm{Ta}(1)-\mathrm{S}(2)-\mathrm{Cr}(2)$	$133.4(1)$
$\mathrm{Ta}(1)-\mathrm{S}(2)-\mathrm{S}(1)$	$66.7(1)$
$\mathrm{Cr}(2)-\mathrm{S}(2)-\mathrm{S}(1)$	$116.2(2)$

gravity centers of both Cp rings and Ta . In $2, \mathrm{~S}(1)$ and $S(2)$ are -1.31 and $+0.70 \AA$ outside this plane. The angles $\mathrm{Ta}-\mathrm{Cr}-\mathrm{S}$ are in the range of 133° for both $\mathrm{Cr}(\mathrm{CO})_{5}$ groups. A comparison of the other bond parameters of the cores of $\mathbf{1 , 2}$, and $\mathrm{Cp}_{2}{ }_{2} \mathrm{TaS}_{2} \mathrm{H}$ shows that they are quite similar with the exception of the $S-S$ bonds. These are significantly shortened by 0.11 (1) and 0.12 (2) \AA as a consequence of the coordination.

2.2. Synthesis and reactivity of $\mathrm{Cp}_{2}^{x} \mathrm{NbS}_{2} \mathrm{H} \cdot \mathrm{Cr}(\mathrm{CO})_{5} 3$

The reaction of $\mathrm{Cp}^{\mathrm{x}}{ }_{2} \mathrm{NbS}_{2} \mathrm{H}$ with two equivalents of $\mathrm{Cr}(\mathrm{CO})_{5}$ THF gives exclusively the red monoadduct $\mathbf{3}$ in moderate yield. C, H analyses are in agreement with the

Fig. 2. Crystal structure of 2 . The \mathbf{H} atom bound to Ta cannot be localised exactly and is therefore omitted.
composition $\mathrm{Cp}^{x}{ }_{2} \mathrm{NbS}_{2} \mathrm{H} \cdot \mathrm{Cr}(\mathrm{CO})_{5}$ and the IR spectrum exhibits $\nu(\mathrm{CO})$ absorptions typical of the $\mathrm{Cr}(\mathrm{CO})_{5}$ moiety. The field desorption spectrum contains, instead of the expected parent ion of $\mathbf{3}$, mass peaks of $\mathrm{Cp}_{2}{ }_{2} \mathrm{NbS}_{2} \mathrm{H}$ and of $\mathrm{Cp}_{4}{ }_{4} \mathrm{Nb}_{2} \mathrm{~S}_{4} \mathrm{Cr}$ (see below) in nearly equal amounts. The ${ }^{1} \mathrm{H}$ NMR spectrum shows, as for its precursor $\mathrm{Cp}_{2}{ }_{2} \mathrm{NbS}_{2} \mathrm{H}$ [7], four resonances for the ring methyl groups. This means that on the NMR time scale both Cp^{x} ligands are equivalent. Owing to the sterically

Table 4
Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement coefficients ($\AA^{2} \times 10^{3}$) for $\mathrm{Cp}_{2}^{\prime} \mathrm{TaS}_{2} \mathrm{H} \cdot 2 \mathrm{Cr}(\mathrm{CO})_{5}$) (2)

Atom	x	y	z	$U_{\text {eq }}{ }^{\text {a }}$
$\mathrm{Ta}(1)$	979(1)	1831(1)	2301(1)	58(1)
$\mathrm{Cr}(1)$	-2071(2)	-302(2)	$3610(1)$	54(1)
C(31)	-396(14)	-1434(11)	$3899(8)$	69(7)
O(31)	564(10)	-2129(9)	$4113(6)$	105(6)
C(32)	- 1995(14)	- 1242(12)	2783(8)	68(7)
O(32)	- 2007(12)	-1812(9)	2328(7)	109(7)
C(33)	-3658(13)	805(12)	3294(7)	62(7)
O(33)	-4675(9)	1507(9)	3098(5)	88(5)
C(34)	- 2299(12)	563(10)	4500(7)	55(6)
O(34)	-2519(9)	1020 (8)	5085(5)	81(5)
C(35)	-3193(14)	- 1080(12)	4397(9)	77(8)
O(35)	$-3887(11)$	1580(9)	4916(6)	125(7)
$\mathrm{Cr}(2)$	-2446(2)	2991(2)	790(1)	70(1)
C(36)	-3438(16)	3544(13)	-63(9)	104(9)
O(36)	-4105(14)	3922(10)	-593(7)	$159(8)$
C(37)	-837(16)	2342(15)	-27(9)	99(9)
O(37)	83(12)	1901(13)	-555(7)	154(9)
C(38)	-2047(18)	4350(15)	600(10)	102(10)
O(38)	-1760(18)	5234(11)	448(9)	178(10)
C(39)	-4179(15)	3633(13)	1557(9)	91(8)
O(39)	-5314(11)	3980(10)	2000(7)	128(7)
C(40)	-2830(15)	1542(13)	961(8)	$78(8)$
O(40)	-2975(11)	636(10)	1043(7)	106(6)
S(1)	-605(3)	616(3)	2399(2)	49(1)
S(2)	$-1487(3)$	2402(3)	2073(2)	$53(1)$
C(1)	1910(12)	2116(13)	759(7)	67(7)
C(2)	1993(12)	988(12)	985(7)	$56(6)$
C(3)	2987(12)	371(11)	1501(7)	54(6)
C(4)	3468(11)	1250(12)	1628(7)	58(6)
C(5)	2801(13)	2317(11)	$1205(8)$	65(7)
C(6)	534(13)	1455(12)	3829 (7)	63(7)
C(7)	-420(12)	2498(11)	3657(6)	49(6)
C(8)	312(14)	3319(11)	3255(7)	62(7)
C(9)	1786(12)	2686(12)	3153(7)	62(7)
C(10)	1951(12)	1504(11)	3524(7)	$62(6)$
C(11)	-346(15)	4669(12)	3069(10)	82(8)
C(13)	-497(19)	5136(14)	3918(11)	165(14)
C(14)	605(16)	5230(12)	2368(11)	181(13)
C(15)	$-1813(14)$	5046(12)	2918(10)	117(10)
C(12)	3635(14)	-936(12)	1705(8)	66(7)
C(16)	4145(17)	-1278(12)	2526(9)	140(12)
C(17)	4954(12)	-1356(11)	988(8)	$97(8)$
C(18)	2648(14)	-1627(11)	1774(9)	98(8)
C(41)	5124(21)	3977(16)	4888(14)	133(6)
C(42)	4283(21)	5925(18)	4561(14)	155(7)
C(43)	3847(38)	5395(37)	3910(23)	126(14)
C(44)	4302(31)	4615(30)	4298(19)	224(12)

[^1]more demanding Cp^{x} ligands, when compared with 1 , the pseudo inversion at sulfur in $\mathbf{3}$ may be assumed to proceed much easier. In agreement with this assumption, $\mathbf{3}$ loses the $\mathrm{Cr}(\mathrm{CO})_{5}$ fragment easier than $\mathbf{1}$ under mass spectroscopic conditions.

Complex 3 decomposes nearly quantitatively in boiling toluene to give the CO-free complex 4, which analyses as $\mathrm{Cp}^{\times}{ }_{4} \mathrm{Nb}_{2} \mathrm{~S}_{4} \mathrm{Cr}$ (Eq. (2)). The IR spectrum of 4 is of little diagnostic value and the ${ }^{1} \mathrm{H}$ NMR spectrum exhibits two resonances for the ring methyls. The compound belongs to the class of bis(niobocene)tetrathiometalates, which contains a tetrahedral MS_{4} core. It is more directly accessible by the reaction of $\mathrm{Cp}{ }^{(*)}{ }_{2} \mathrm{NbS}_{2} \mathrm{H}$ with binary metal carbonyls [9], but now it is evident that compounds of type 3 are intermediates on this route.

3

4
Analogous behavior has been described for solutions of 1 and 2 which develop into green $\mathrm{Cp}_{4}^{\prime} \mathrm{Ta}_{2} \mathrm{~S}_{4} \mathrm{Cr}$ upon heating in toluene [10].

3. Experimental section

Experimental and spectroscopic techniques are the same as reported in Ref. [4]. $\mathrm{Cp}_{2}^{\prime} \mathrm{TaS}_{2} \mathrm{H}$ [5] and $\mathrm{Cp}_{2}{ }_{2} \mathrm{NbS}_{2} \mathrm{H}$ [6] were prepared by literature methods.

3.1. Reaction of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{TaS}_{2} \mathrm{H}$ with $\mathrm{Cr}(\mathrm{CO})_{5} \mathrm{THF}$

A solution of $247 \mathrm{mg}(0.94 \mathrm{mmol})$ of $\mathrm{Cr}(\mathrm{CO})_{5} \mathrm{THF}$ in 20 ml THF (prepared by irradiation of $\mathrm{Cr}(\mathrm{CO})_{6}$ [11]) was added dropwise to a stirred solution of 380 mg (0.78 mmol) of $\mathrm{Cp}_{2}^{\prime}{ }_{2} \mathrm{TaS}_{2} \mathrm{H}$ in 30 ml of THF. The resulting brown reaction mixture was stirred for 1 h and then the solvent was removed under vacuum. The residual solid was chromatographed on silica gel (column $20 \times 2 \mathrm{~cm}$). With toluene an orange band was eluted containing 1 and 2. After evaporation of the solvent the mixture was dissolved in about 40 ml of toluene. After 1 day at $-20^{\circ} \mathrm{C}$ orange crystals of 2 were isolated (13% yield). The concentrated solution gave orange crystals of 1 at $-20^{\circ} \mathrm{C}$ (71% yield).

1: Anal. Found: $\mathrm{C}, 40.72 ; \mathrm{H}, 3.78 . \mathrm{C}_{23} \mathrm{H}_{27} \mathrm{CrO}_{5} \mathrm{~S}_{2} \mathrm{Ta}$ (680.5). Calc.: C, $40.59 ; \mathrm{H}, 4.00 \%$. FD mass spec-
troscopy (MS) (from toluene): 680.0. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: $1.10(\mathrm{~s}, 18), 3.14(\mathrm{~s}, 1), 3.67(\mathrm{~m}, 2), 4.23(\mathrm{~m}, 2), 4.31$ (m, 2), 5.87 (m, 2) ppm. IR (THF): $\nu_{\text {co }} 2060 \mathrm{~s}, 1935$ vs, $1900 \mathrm{~s} \mathrm{~cm}^{-1}$.

2: Anal. Found: C, 41.17; H, 3.29. $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{Cr}_{2^{-}}$ $\mathrm{O}_{10} \mathrm{~S}_{2} \mathrm{Ta}$ (872.6). Calc.: $\mathrm{C}, 41.19 ; \mathrm{H}, 3.28 \%$ (calculated with 0.5 toluene). FD-MS (from toluene): 871.9. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $1.03(\mathrm{~s}, 18), 3.98(\mathrm{~m}, 2), 4.09(\mathrm{~s}, \mathrm{l}), 4.35$ $(\mathrm{m}, 2), 5.09(\mathrm{~m}, 2), 5.36(\mathrm{~m}, 2) \mathrm{ppm}$. IR (KBr): ν_{co} $2064 \mathrm{~s}, 2057 \mathrm{~s}, 1916 \mathrm{vs} \mathrm{cm}^{-1}$.

3.2. Preparation of $\mathrm{Cp}^{x}{ }_{2} \mathrm{NbS}_{2} \mathrm{H} \cdot \mathrm{Cr}(\mathrm{CO})_{5} 3$

A solution of $456 \mathrm{mg}(1.0 \mathrm{mmol})$ of $\mathrm{Cp}_{2}{ }_{2} \mathrm{NbS}_{2} \mathrm{H}$ and $527 \mathrm{mg}(2.0 \mathrm{mmol})$ of $\mathrm{Cr}(\mathrm{CO})_{5} \mathrm{THF}$ [11] in 50 ml of THF was stirred for 2 h at room temperature in the dark, while the color turned from orange to red. After evaporation of the solvent the residue was diluted in 20 ml of toluene and transferred onto SiO_{2} (column 20×3 cm). With toluene $175 \mathrm{mg}(27 \%)$ of dark red 3 were isolated.

3: Anal. Found: C, 50.66; $\mathrm{H}, 5.87 . \mathrm{C}_{27} \mathrm{H}_{35} \mathrm{CrNbO}_{5} \mathrm{~S}_{2}$ (648.1). Calc.: $\mathrm{C}, 50.00 ; \mathrm{H}, 5.43 \%$. FD-MS (from toluene): 456.0 (calc. 456.2 for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NbS}_{2}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 0.71\left(\mathrm{t}, 6 ;{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right), 0.82(\mathrm{~s}, 1), 1.50(\mathrm{~s}$, $6), 1.52(\mathrm{~s}, 6), 1.53(\mathrm{~s}, 6), 1.58(\mathrm{~s}, 6), 2.04(\mathrm{~m}, 4) \mathrm{ppm}$. IR (KBr): $\nu_{\mathrm{co}} 2055 \mathrm{~s}, 1945 \mathrm{vs}, 1884 \mathrm{~s} \mathrm{~cm}^{-1}$.

3.3. Thermolysis of $\mathrm{Cp}_{2}{ }_{2} \mathrm{NbS}_{2} \mathrm{H} \cdot \mathrm{Cr}(\mathrm{CO})_{5} 3$

A solution of $139 \mathrm{mg}(0.21 \mathrm{mmol})$ of $\mathbf{3} \mathrm{in} 50 \mathrm{ml}$ of toluene was refluxed for 18 h . The concentrated solution was chromatographed on SiO_{2} (column 20×3 cm). With toluene a red band containing 90 mg (44%) of $\mathrm{Cp}^{\mathrm{x}}{ }_{4} \mathrm{Nb}_{2} \mathrm{~S}_{4} \mathrm{Cr} 4$ was isolated.

4: Anal. Found: C, 54.93; H, 7.13. $\mathrm{C}_{44} \mathrm{H}_{68} \mathrm{CrNb}_{2} \mathrm{~S}_{4}$ (963.2). Calc.: C, 54.87 ; H, 7.12\%. FD-MS (from toluene): 963.1. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 0.91\left(\mathrm{t}, 12 ;{ }^{3} J_{\mathrm{HH}}=\right.$ $7.5 \mathrm{~Hz}), 1.80(\mathrm{~s}, 24), 1.89(\mathrm{~s}, 24), 2.34\left(\mathrm{q}, 8 ;{ }^{3} J_{\mathrm{HH}}=7.5\right.$ Hz) ppm.

3.4. Crystallographic data

3.4.1. $\mathrm{Cp}_{2}{ }_{2} \mathrm{TaS}_{2} \mathrm{H} \cdot \mathrm{Cr}(\mathrm{CO})_{5} \mathrm{I}$

Red needles $\left(0.10 \times 0.17 \times 0.85 \mathrm{~mm}^{3}\right)$, monoclinic $C 2 h / 6, C 2 / c$ (15); cell: $a 32.54(3), b 11.63(1), c$ $13.500(8) \AA, \beta 92.54^{\circ} ; V 5103.9 \AA^{3}, Z=8$; empirical absorption correction: 6 reflections $6.0<2 \Theta<36.0^{\circ}$. Transmission factor ($\mathrm{min} / \mathrm{max}$) $0.66 / 1.00, \mu 4.84$ $\mathrm{mm}^{-1} . F(000) 2664, d($ calc $)=1.77 \mathrm{~g} \mathrm{~cm}^{-3}$; Syntex R3. Mo $\mathrm{K} \alpha$ radiation, graphite monochromator, 6989 unique observed reflections; 3791 independent reflections ($I>2.5 \sigma(I)$). Structure solution by means of Patterson and Fourier methods. $R=0.069, R_{w}=0.052$; residual electron density $(\max / \mathrm{min}) 2.0 /-2.40 \mathrm{e}^{\AA^{-3}}$, shift/esd (max) 0.004, GOOF $=1.66$.
3.4.2. $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{TaS}_{2} \mathrm{H} \cdot 2 \mathrm{Cr}(\mathrm{CO})_{5} \cdot 0.5 \mathrm{C}_{7} \mathrm{H}_{8} 2$

Red plates ($0.15 \times 0.40 \times 0.65 \mathrm{~mm}^{3}$), triclinic $\mathrm{Ci} / 1$, $P-1$ (2); cell: a 10.333(5), b 12.19(1), c 16.31(1) A, $\alpha 77.67(6), \beta 73.49(4), \gamma 68.78(6)^{\circ} ; V 1822.0 \AA^{3}$, $Z=2$; empirical absorption correction: 6 reflections $4.0<2 \Theta<36.0^{\circ}$. Transmission factor (min / \max) $0.60 / 1.00, \mu 3.75 \mathrm{~mm}^{-1} . F(000) 904, d($ calc $)=1.67$ $\mathrm{g} \mathrm{cm}^{-3}$; Syntex R3. Mo $\mathrm{K} \alpha$ radiation, graphite monochromator, 6475 unique observed reflections; 4110 independent reflections ($I>2.5 \sigma(I)$). Structure solution by means of Patterson and Fourier methods. $R=$ $0.064, R_{w}=0.051$; residual electron density ($\mathrm{max} / \mathrm{min}$) $1.25 /-1.32$ e \AA^{-3}, shift/esd (max) 0.6 (disordered toluene; without 0.07), $G O O F=1.95$.

Acknowledgements

We are grateful to the Deutsche Forschungsgemeinschaft for financial support and to Professor G. Hutner for support of X-ray crystallography.

References

[1] Reviews on the coordination abilities of the $\mathrm{S}_{2}{ }^{2-}$ ligand are given in: A. Müller, W. Jaegermann and J.H. Enemark, Coord. Chem. Rev., 46 (1982) 245; A. Müller and E. Diemann, Adv.

Inorg. Chem., 31 (1987) 89; J. Wachter, Angew. Chem. Int. Ed. Engl., 28 (1989) 1613.
[2] (a) H. Köpf, S.K.S. Hazari and M.Z. Leitner, Z. Naturforsch. b. 33 (1978) 1398; S. Gambarotta, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Chem. Soc. Chem. Commun., (1983) 184; (b) R.S. Pilato, K.A. Eriksen, E.I. Stiefel and A.L. Rheingold, Inorg. Chem., 32 (1993) 3799.
[3] W.A. Howard, G. Parkin and A.L. Rheingold, Polyhedron, 14 (1995) 25.
[4] J.-C. Leblanc, C. Moise, F. Volpato, H. Brunner, G. Gehart, J. Wachter and B. Nuber, J. Organomet. Chem., 485 (1995) 237.
[5] H.-J. Bach. H. Brunner, J. Wachter, M.M. Kubicki, J.-C. Leblanc, C. Moise, F. Volpato, B. Nuber and M.L. Ziegler, Organometallics, /I (1992) 1403.
[6] H. Brunner, G. Gehart, W. Meier, J. Wachter and B. Nuber, J. Organomet. Chem., 454 (1993) 117.
[7] P. Li and M.D. Curtis, Inorg. Chem., 29 (1990) 1242 and references cited therein.
[8] A.A. Pasynskii, I.L. Eremenko, Y.V. Rakitin, B. Orazsakhatov, V.M. Novotortsev, O.G. Ellert, V.T. Kalinnikov, G.G. Aleksandrov and Y.T. Struchkov, J. Organomet. Chem., 210 (1981) 377; R.D. Adams, J.E. Babin, J.-G. Wang and W. Wu, Inorg. Chem., 28 (1989) 703; R.D. Adams, J.E. Babin and J.-G. Wang, Polyhedron, 8 (1989) 2351; H. Brunner, U. Klement, W. Meier, J. Wachter, O. Serhadle and M.L. Ziegler, J. Organomet. Chem., 335 (1987) 339; H. Brunner, S. Challet, M.M. Kubicki, J.-C. Leblanc, C. Moise, F. Volpato and J. Wachter, Organometallics, 14 (1995) 3623.
[9] H. Brunner, M.M. Kubicki, G. Gehart, E. Lehrl, D. Lucas, W. Meier, Y. Mugnier, B. Nuber, B. Stubenhofer and J. Wachter, J. Organomet. Chem., 510 (1996) 291.
[10] F. Volpato, Thesis, Université de Bourgogne, Dijon, 1993.
[11] W. Strohmeier and F.J. Müller, Chem. Ber., 102 (1969) 3608

[^0]: * Corresponding author.

[^1]: ${ }^{\text {a }}$ Equivalent isotropic U defined as one third of the trace of the orthogonalized $\mathrm{U}_{i j}$ tensor.

